

Appendix V

Page 74 of 74 Consultant: Boothby

Design Calculations

Energy to Serve Your World"

Project	Prepared by	Date
Subject/Title	Reviewed by	Date
ERV calculations	Calculation Number	Sheet) of Z

Exhaust (fotal)	
$Tx-A \rightarrow (5) e$	180 ctm
Tx-8 >(5) @	
Tx-D>(1) @	180 cfm
c	2880 cm

> Exhaust cost

 $= 2880 \times \frac{400}{320} = $3(d)$

Sensible heat	DT = (90° - 70°) = 20°
g =1.08 cfm st	
=(1.88)(2880)(200) = 62,208	BTuffer

* ERV is 50% more efficient

$$= 731.1000 = 2.59 \text{ Jon x 1 kW/for} = 2.59 \text{ kw}$$

Design Calculations

Project	Prepared by	Date
Subject/Title	Reviewed by	Date
	Calculation Number	Sheet 2 of 2

\$ 2800 = 10,810 hrs

>17 running 8 hrs per day @ 900

10810 hr x 1 day = 1351 days

> assume 150 days a year where its at least 90°

1351/150 = 9 years

